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Abstract: - It is well known that pneumatic positioning systems are still irreplaceable in many application fields 
like industrial automation. The maintenance cost, the low level pollution and the high speed of operation, force 
the use of such systems. The pneumatic piston position control has always been a challenge and engineers have 
applied many control methods in order to achieve position accuracy. Apart from air compressibility, the most 
important issue to be solved is the highly nonlinear phenomena inside the cylinder body that become 
unpredictable over time and long term operations of the system. Multiple friction forces, energy losses and 
sealing deformations are always present in this type of actuating process. In this research work, an intelligent 
control approach is implemented for the task, in an attempt to overcome the classical control methods 
inefficiency. A subcategory method of artificial neural networks is adopted for investigation, which is described 
in details. All experimentation results, system performance behaviour discussion and possible further 
improvements, form the rest of this paper body. 
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1 Introduction 

The power and usefulness of artificial neural 
networks have been demonstrated in several 
applications including speech synthesis, diagnostic 
problems, medicine, business and finance, robotic 
control, signal processing, computer vision and 
many other problems that fall under the category of 
pattern recognition.  For some application areas, 
neural models show promise in achieving human-
like performance over more traditional artificial 
intelligence techniques. Neural networks (NN) have 
been shown to be particularly useful in solving 
problems where traditional artificial intelligence 
techniques involving symbolic methods have failed 
or proved inefficient. Such networks have shown 
promise when applied to problems involving low-
level tasks that are computationally intensive, 
including industrial control. Neural networks, with 
their massive parallelism, can provide the 
computing power needed for these problems, though 
these requirements can make them demanding 
algorithms when implemented on conventional 

single-thread execution computer architectures, as is 
the case here. A major shortcoming of neural 
networks lies in the long training times that they 
require, particularly when many layers of weighted 
connections between neurons are used. Hardware 
advances should diminish these limitations, and 
neural-network-based systems are likely to become 
greater complements to conventional computing 
systems. Neural networks, with their remarkable 
ability to derive meaning from complicated or 
imprecise data, can be used to extract patterns and 
detect trends that are too complex to be noticed by 
either humans or other computer techniques. A 
trained neural network can be thought of as an 
"expert" in the category of information it has been 
given to analyse. This expert can then be used to 
provide projections given new situations of interest 
and answer "what if" questions. Other advantages of 
NNs include the adaptive learning ability to learn 
how to do tasks based on the data given for training 
or initial experience and the self organisation ability 
to create its own organisation or representation of 
the information it receives during learning time. In 
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addition to this, the real time operation 
characteristic of ANNs allows computations to be 
carried out in parallel, hence special hardware 
devices have been designed and manufactured 
which take advantage of this capability. 

An Artificial Neural Network (ANN) is an 
information processing paradigm that is inspired by 
the way biological nervous systems, such as the 
brain, process information. The key element of this 
paradigm is the novel structure of the information 
processing system. It is typically composed of a 
large number of highly interconnected processing 
elements (neurons) working in unison to solve 
specific problems. A neural network is an 
interconnected group of artificial neurons that uses a 
mathematical or computational model for 
information processing based in a connectionistic 
approach to computation. In most cases an ANN is 
an adaptive system that changes its parameters 
and/or structure, based on external or internal 
information that flows through the network. The 
most common type, the ‘Multi-Layer Perceptron 
(MLP) is shown in figure 1: 

 
Fig.1 A simple MLP neural network 

The above figure represents this type of ANN, 
which consists of three groups, or layers, of units: a 
layer of “input” units is connected to a layer of 
“hidden” units, which is connected to a layer of 
“output” units. The activity of the input units 
represents the raw information that is fed into the 
network. The activity of each hidden units is 
determined by the activities of the input units and 
the weights on the connection between the input and 
the hidden units. The behaviour of the output units 
depends on the activity of the hidden units and the 
weights between the hidden and the output units. 
This type of network is interesting because the 
hidden units are free to construct their own 
representations of the input. The weights between 
the input and hidden units determine when each 
hidden unit is active and so, by modifying these 

weights, a hidden unit can choose what it represents. 
In more practical terms neural networks are non-
linear statistical data modelling or decision making 
tools. They can be used to model complex 
relationships between inputs and outputs or to find 
patterns in data. ANNs, like people, learn by 
example. An ANN is configured for a specific 
application, such as pattern recognition or data 
classification, through a learning process. Learning 
in biological systems involves adjustments to the 
synaptic connections that exist between the neurons. 
This is true of ANNs as well, as in [1], [2], [3], [4] 
[5], [6], [7], [8], [9] and [10] . An artificial neuron is 
a device with many inputs and one output. A neuron 
forming part of a supervised ANN has two modes of 
operation; the training mode and the using mode. In 
the training mode, the neuron can be trained to track 
a particular input-output relationship or set of such 
relationships. Another categorisation that can be 
applied here is whether changes from learning are 
applied after presentation of each input-output 
training example, or if the errors are summed and 
used for training only after the ANN has been 
exposed to the whole set training set. The former is 
often called ‘incremental mode’ training, whilst the 
latter is often called ‘batch mode’ training. The 
former, however, allows for ‘on-line’ training, i.e., 
ANNs that learn new input-output relationships 
whilst they are active, as is the case here. 

Every neural network possesses knowledge that is 
contained in the values of the connections weights. 
Modifying the knowledge stored in the network as a 
function of experience implies a learning rule for 
changing the values of the weights. All learning 
methods used for adaptive neural networks can be 
classified into three major categories, each 
corresponding to a particular abstract learning task. 
Usually any given type of network architecture can 
be employed in any of those tasks. The learning 
categories are, reinforcement learning, unsupervised 
learning and supervised learning which was adopted 
in this paper. Supervised learning incorporates an 
external teacher, so that each output unit is told what 
its desired response to input signals ought to be. 
During the learning process global information may 
be required. An important issue concerning 
supervised learning is the problem of error 
convergence, i.e., the minimization of error between 
the desired and computed unit values. The aim is to 
determine a set of weights, which minimizes the 
error. One well-known method, which is common to 
many learning paradigms, is the least mean square 
(LMS) convergence. In supervised learning, a 
researcher is given a set of examples pairs 
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( , ), ,x y x X y Y∈ ∈ and the aim is to find a 
function f , which is considered as the networks 
output, in the allowed class of functions that 
matches the examples. In other words, the goal is to 
infer how the mapping implied by the data and the 
cost function, is related to the mismatch between the 
mapping and the data. It must be stated that a neural 
network learns off-line if the learning phase and the 
operation phase are distinct. A neural network learns 
on-line if it learns and operates at the same time. 
Usually, supervised learning is performed off-line, 
whereas unsupervised learning is performed on-line, 
as in [11], [12], [13], [14] and [15]. Some earlier 
research work has been carried out in the area of 
pneumatic systems control by using some kinds of 
neural network approach. In addition to this, other 
attempts to apply a neural network controller in a 
pneumatic system for position control have shown 
that, although successful performance was 
indicated, there was still space for further 
improvement of the controllers, as in [16], [17], [18] 
[19], [20] and [21]. 
 
 
2 The ANN Type of Control 
 
2.1 Experimental Rig Details 

The equipment which was used to undertake the 
control tasks of this research work, consists of a 
double acting cylinder (FESTO DSW-32-80-A) of 
80mm piston stroke, a proportional servo valve 
(FESTO MPYE-5-1/8-) with 50msec response time, 
a linear variable differential transducer, (RDP 
ACT1000C) as a position sensor for feedback 
signaling and all necessary gear such as tubing, air 
preparation and mountings. The pneumatic cylinder 
is placed vertically because during experimentation 
its performance was also investigated under variable 
loads or multiple constant loads.  As an interface 
between the experimental rig and the user, a 
common PC was used thus all data were recorded 
into it. A 32-bit microcontroller board was used 
additionally to the PC in order to compile and 
execute the ANN control algorithm in the 
appropriate C programming language code. The 
microcontroller’s output, via wiring, was straight 
connected to the servo valve, which is the 
‘controllable’ device of the system. The input signal 
of the microcontroller is the feedback of the position 
sensor and the target position that the user demands. 
The detailed block diagram of the pneumatic 
positioning system is provided in the following 
figure: 

 
Fig.2 The overall system block diagram 

 
2.2 Radial Basis Function Technique 

In this research project it was decided to 
implement a specific neural network method, which 
has been used before in nonlinear control tasks, but 
has never been applied so far in this kind of 
pneumatic actuator control. This method is called 
“Radial Basis Function” (RBF) and is a sub-
category of the supervised learning neural networks 
control approach, discussed earlier. The motivation 
to use this method, apart from the fact that it has not 
been used before in such pneumatic systems, is that 
it looks very promising for tracking position control 
tasks in other related applications, such as electric-
motor actuated robot manipulators (see [11], [12] 
and [13]). The RBF network method is very useful 
for function approximation, classification and 
modelling of dynamic systems and time series 
prediction. They typically consist of three layers: an 
input layer, a hidden layer with a nonlinear RBF 
activation function (the neurons), and a linear output 
layer, shown in the next figure, where 1x , 2x , nx  are 

multiple inputs and y
∧

is the single output:  

 
Fig.3 A typically Radial Basis Function network 

For the pneumatic system used in this project, the 
plant has one output, which is the cylinder piston 
position. At the input of each neuron, the distance 
between the neuron centre and the input vector is 
calculated. The output of the neuron is then formed 
by applying the basis function to this distance. The 
RBF network output is formed by a weighted sum 
of the neuron outputs. A bias signal can then be 
added, but is not used here. For a given input value 
(or values if there is more than one input), typically 
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only a small group of neurons is active. As the input 
value(s) change, so does this group. This is very 
different from the most common type, the Multi-
Layer Perceptron (MLP) where, all neurons are 
active in forming the output of the ANN no 
matter what the input value is. The arrows in the 
figure symbolize parameters in the network. Figure 
2 illustrates an RBF network, which is often 
complemented with a linear part. This corresponds 
to additional direct connections from the inputs to 
the output neuron. Mathematically, the RBF 
network, including a linear part, produces an output 
given by: 

 

(1) 

Where, 

nb  is the number of neurons, each containing a 
basis function. The parameters of the RBF network 
consist of the positions of the basis functions 1

iw , the 

inverse of the width of the basis functions ιλ , the 
weights in output sum 2

iw , and the parameters of 
the linear part ,..., . In some cases of function 
approximation, it is advantageous to retain the 
additional linear part, but it can also be excluded in 
many other cases. The parameters are often lumped 
together in a common variable θ  to make the 
notation compact. The generic description ( , )g xθ  
of the neural network model can be used, where g is 
the network function and x is the input to the 
network. In the training process, the parameters of 
the network are tuned so that the training data fit the 
network model, equation (1), as well as possible. 
Commonly Gaussian curves are used for RBFs and 
are chosen for single input, single output control 
tasks. In this case the basis functions look like 
“bell”-shapes distributed around the xy-surface. 
Basis functions are normally of equal size and shape 
and normally of even separation and hence overlap. 
Parameters that are open to design decisions include 
RBF function shape, learning rate and RBF width 
and separation. Once these parameters are fixed for 
a given network architecture, the learning algorithm 
operates on the “weight vector” to gain to obtain the 
desired performance. An alternative, and 
complementary, view of how these networks 
operate is worth noting here, because it may help the 
reader to understand why some of the work 

described below and the future enhancements 
proposed could improve performance. Effectively, 
this type of ANN is a kind of ‘fuzzy look-up table’, 
where nonlinear functions that have overlapping but 
only local influence with respect to the input values, 
are weighted and then summed to give an overall 
output. This means that RBF function width and 
separation affect the manner in which the network 
can track important input changes. If the functions 
are wide, but the input values change rapidly, then it 
is likely that the neuron activity will ‘filter out’ any 
fast changing input values, and the ANN may not 
react appropriately. However, having a larger 
number of smaller width and more closely packed 
RBF functions will reduce the ability of the ANN to 
generalize between training set examples because 
the learning will be more highly localized, and there 
can be an explosion in the required number of 
neurons to cover the input space. For this project, 
there are three important advantages of the RBF that 
make it more useful network rather than the MLP, 
like: 

• There is only one layer of weighted 
connections. This means that, for any input-
output mapping, there is only a singe weight-
vector that solves it. This makes learning fast 
and reliable. 

• Neuron activation and learning is localized in 
the input space. This means that when a new 
input-output relationship is learned, it will 
not affect other learned mappings, as is the 
case for the globally active MLP. In the case 
of the MLP, if we used it for on-line 
incremental learning, then we would have to 
re-train the ANN with the entire training set 
acquired so far, plus the new example, a 
gradually increasing sized training set and 
hence, an impractical approach. 

• The weight vector values are applied to the 
computational feed forward processing after 
input signals have passed through a non-
linear function (the basis function). 

Since this is a supervised learning architecture, it is 
assumed that there is a training set. The training set 
provides known examples of input-output mappings 
between which the network will interpolate. The 
algorithm is an iterative one, as for all neural 
network learning algorithms, i.e., the training 
examples are repeatedly presented, each time 
finding an error between the actual RBF net output 
and the desired output for a given input value. Each 
error is used to update the weights of those neurons 
that were active in producing that output value. A 
proportion of an error is taken by multiplying it by a 
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“learning rate”. For each neuron, this value is then 
modified by a “weighting factor” proportional to the 
activation of that neuron. “Incremental” training is 
used so that the weighted-error values are used 
immediately to update the weights. 

The task of maintaining position stability over 
long-term operation of the actuator was the scope of 
experimentation. It was decided to keep as a base 
the classical PD control method due to its excellent 
results recorded in [12] and the fact that the PD 
controller gains are already estimated from prior 
experimentation. The basic idea here is to use the 
fixed gain PD controller, and then ‘wrap around it’ 
the RBF ANN, so that it sees the same inputs that 
the PD controller sees, and then adds its output to 
the PD controller output at a summing junction. The 
learning signal for the ANN is the error signal 
between the desired and actual cylinder piston 
positions. As the PD controller varies in its accuracy 
due to the time-variant nature of the plant, then the 
ANN learns to take actions that correct those 
inadequacies on-line. Throughout the whole 
experimentation with the pneumatic system during 
this research project, it was clearly noticeable that 
the system changes unpredictably due to its 
response over long term operation. The goal of 
overcoming the time variant effects in the system 
was the reason for designing long term experiments 
and recording whether or not the behavior was 
improved by applying the RBF neural network 
method to the plant. It must be stated here that the 
RBF control algorithm code, all necessary data 
acquisition code and all communication code 
between the microcontroller and the pneumatic 
valve is available from authors upon request since 
they could not fit in a short paper publication like 
this. In an attempt to describe the implementation of 
the neural network controller to the system, some 
necessary explanations must be provided as an 
addition to all the above text. There is the fact that a 
‘temporal advance’ factor needed to be evaluated, 
which corresponds to the temporal inverse of the 
delay through the plant, i.e., a signal is applied to 
the plant and sometime later an error is observed 
that is the result of applying that signal. This means 
that, when using an error as a training signal, we 
need to modify weights in the ANN, which 
correspond to neurons that were active previously 
by that fixed ‘temporal advance’ value. This was 
evaluated experimentally and, when estimated to be 
4ms, gave satisfactory performance. In other words, 
at a 1ms sampling period, the error signal was used 
to modify those ANN weights that were active 4 
times steps previously because they gave rise to the 

observed error. To this end, the use of the ‘ANN 
wrapped round’ structure allows for the PD 
controller to force the overall controller output 
values to be bounded during all experiments. 

To save time in some of the following 
experiments, the PD controller was artificially 
‘detuned’ in order to observe and have the ANN 
correct effects similar to those observed during 
long-term experiments. In addition, long-term 
experiments were carried out, turning the ANN 
learning on and of manually to show its effects. 
Although learning could be left on permanently, in 
any practical industrial context, one would not want 
to have the complex ANN on-line learning code 
turned on permanently when it is not needed, and it 
would be simple to automate an on-line error margin 
estimator that could autonomously turn ANN 
learning on and off as appropriate so as to allow the 
ANN to correct for time-varying inaccuracies as and 
when required.  
 
3 Experimentation and Results 

Figure 4 illustrates the overall functionality of the 
on-line learning algorithm, the axes of figure 4, like 
all other figures in this section, show time in 
seconds on the x-axis and the magnitude of the 
‘position’ plot in sensor count values of the LVDT 
attached to the piston on the y-axis, as measured by 
the microcontroller. 

  
Fig.4 On-line learning functionality 

In the above figure, the RBF-node placement 
algorithm was set to place a maximum of 10 nodes, 
within a range of time starting from a fixed point 
relative to the rising edge of the square wave. Node 
placement was restricted to 10 because, for the 
medium-power microcontroller used here, this was 
the maximum number of nodes that could be 
processed in real-time during the 1ms sampling 
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period. The decision of whether to place another 
RBF node or not, is made by the on-line learning 
algorithm, based on the magnitude of measured 
error between demanded and actual piston position 
and whether there is already a node placed within 
the region. As a result, if the error was larger than a 
set value and there was no RBF-node centred within 
a set distance, then a new node was placed. 
Regardless of whether a new node had been placed 
or not, if the error was larger than a minimum set 
value, then a pass of the incremental learning 
algorithm was then executed. The ‘node placement 
x 20’ plot in figure 4 shows the number of nodes 
currently allocated, and it is easy to see the node 
count increasing at each of the ‘position’ plot rising 
edges. In fact, figure 5 zoomed in at the end of 
figure 4, shows that 3 nodes were placed during the 
illustrated ‘demand square-wave’ period (and the 
location of placement in the time domain (x-axis 
position)), bringing the total number of node placed 
to the maximum of 10 during the period covered by 
figure 4. The ‘node placement x 20’ plot was 
multiplied by 20 to make the values consistent with 
the y-axis numbered scale. The ‘placement period x 
2’ plot shows the period allowed for RBF-node 
placement, and can be more clearly seen in figure 5. 
The triangular shape of the plot has little 
significance, it is simply the result of plotting the 
value of an internal variable that is incremented 
each 1ms sample period after a ‘start-time’ until it 
reaches a maximum value of 100 (shown as 200 on 
the figure due to multiplying this variable by 2 
before plotting, again so as to be consistent with the 
y-axis labelling). 

 
Fig.5 Zoom in at the end of figure 4. 

Careful inspection of the ‘start time’ for RBF-node 
placement reveals that the time chosen precedes the 
rising edge of the ‘position’ plot, illustrating the 
need to place nodes right at the beginning of the step 
demand in desired piston position. Indeed, for 
optimal performance, it might be better to place 

nodes that predict this demand, though this was not 
done here, and would only make sense for repetitive 
cyclic behavior (as actually used here for, though 
only for test purposes). 

In earlier long-term experiments reported in 
earlier research work as in[22], [23] and [24] it was 
noted that, given an initially hand-optimized PD-
controller, and with fixed PD gains thereafter, the 
plant response would become progressively over-
damped, a situation that could be improved by re-
tuning to higher gain values. To simulate the main 
time-variant effects of these long-term experiments, 
here, the PD-gains were deliberately de-tuned to 
give over-damped performance from the outset. 
Since there is a concern here of showing the 
potential of RBF RAN algorithm in this application 
domain, this method of obviating time-consuming 
long-term experiments was considered adequate. 
With the RBF RAN ‘strapped round’ the PD 
controller, and with RBF-node placement restricted 
to the period around the leading edge of the step 
demand, it should be able to provide a corrective 
drive to the system so as to reduce the over-damped 
effects on the leading edge of the plant’s response to 
a positive step demand. The initial over-damped 
response is illustrated in figure 6, where the step-
demand position value is shown by the dotted line. 
It is clear to see that, although it reduces during the 
period of the positive part of the square wave 
position demand cycle, the plant has a significant 
error during the steady-state time, in addition to the 
poor leading edge rise-time. With the learning 
switched on, after approximately 15 seconds of 
operation, it can be clearly seen in figure 6 that the 
rise-time has been improved and steady-state error 
reduced by the RBF drive signal.  

 
Fig.6 Learning switched on at start of operation 

After further operation with the learning switched 
on, it can be seen in figure 7 that performance is 
improved further. 
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Fig.7 Learning switched on at the middle of operation 

The following observation should be noted. A limit 
had to be placed on the maximum numbers of RBF-
nodes (10 in this case, as previously mentioned), 
and a reasonable limit had also to be set on the 
maximum size of a node (i.e., its spread or width on 
the time-domain x-axis of these figures) so that the 
effect of a given node was appropriately local in the 
time-domain. 

In order to illustrate the behaviour and the 
stability of the control algorithm another 
challenging experiment was designed. In order to 
simulate a demanding industrial environment, the 
effects of long-term operation were investigated 
using a different cylinder to the one used for tests 
earlier here. A different cylinder (although the exact 
same FESTO model) was used in order to illustrate 
the versatility of this algorithm, as well as indicating 
minor limitations to the RBF RAN algorithm as it 
currently stands. This new cylinder displayed 
different long-term time-variant characteristics to 
the first one. Over extended periods of operation, 
instead of requiring increase in both P and D gains, 
manual re-tuning resulted in a requirement to reduce 
the derivative (D) gain to ameliorate an oscillatory 
overshoot in the rising edge response to a step 
position demand. The details of this difference in 
long-term characteristics is not fully understood 
within the scope of this research work, but it can 
easily be imagined that the balance between the 
plethora of components affected by the passage of 
time during an experiment and, particularly, the 
concomitant temperature effects, could be different 
from one cylinder to another even though they 
might have been completely identical at 
manufacture. These differences were compounded, 
in this case, by the fact that the new cylinder was, 
literally, newer, and had been subjected to far fewer 
previous operations during its lifetime. Whilst the 
initial response of this cylinder to a step demand 
input is plotted in figure 8, after approximately 37 

minutes of continuous operation in this square wave 
demand regime, the plant response appeared as 
shown in figure 8.  

 
Fig.8 Initial response to a step input 

The increased leading edge oscillatory response is 
clearly visible in figure 9. 

 
Fig.9 Long-term response to a step input without RBF 

To reduce this effect without having to manually re-
tune the PD controller, the RBF RAN was, again, 
strapped round it. After some additional time a 
useful, if incomplete, reduction in oscillatory 
response was achieved, as can be seen in figure 10, 
thus proving once again the beneficiary affect of the 
ANN method adopted in the pneumatic system. 

 

WSEAS TRANSACTIONS on SYSTEMS Michail G. Papoutsidakis, Anthony G. Pipe

E-ISSN: 2224-2678 547 Issue 11, Volume 12, November 2013



 
Fig.10 Long-term response to a step input with RBF on 

However, it should be noted here, that to allow the 
RBF ANN to respond appropriately to this localised 
effect, the size (i.e., spread or width) of the RBF-
nodes had to be reduced below that used in the first 
experiment above. Although this is not a problem in 
itself, it prompts the notion that a mature version of 
this algorithm would not only be able to place many 
more neurons across the temporal domain, but also 
be able to change the size of, and distance between, 
neurons dynamically to suit a given error scenario 
that it is meant to have an effect on. These 
modifications would be required for an ‘industry 
ready’ solution, but are beyond the scope of this 
research work. Indeed, it can be seen from figure 10, 
that the ’10-neuron limit’ already restricts the 
appropriateness of the RBF drive signal in 
attempting to correct for the oscillatory leading edge 
error; its response is too coarsely grained for the 
frequency of oscillation. What is really needed is an 
array of smaller and closer packed RBF-nodes in the 
region immediately preceding the oscillatory 
response but when this was attempted, 10 neurons 
was simply an insufficient number to cover the 
whole area of concern in the leading edge of the 
waveform. 

 
4 Conclusion 

A pneumatic position system is considered to be a 
critical piece of equipment in various fields of 
application. In modern industry, pneumatics has a 
significant role in many robotic applications, despite 
the high complexity and the nonlinearities that these 
systems introduce. In this research project, an 
overall understanding of the dynamics of such a 
system during execution of the task of position 
control was developed. At the same time, a 
significant “branch” of the modern intelligent 
control methods, the on-line learning neural network 
control, was applied to a pneumatic positioning 

system. As a quick review of ANN implementation 
in a real pneumatic positioning rig, it can be 
recorded that the power of this approach, for 
correcting the long-term time variant characteristics 
of this plant, is highlighted in this paper. The 
stability of the system is ensured, and there is no 
need for manual re-tuning of the controller over 
long-term operation, like classical control 
approaches. The purely ‘measured error-based’ 
approach adopted in the on-line learning Radial 
Basis Function method would not suffer from any of 
problems like re-tuning and would seem, therefore, 
to be the approach holding the most promise. With 
all the above details of the control methods applied 
to the system, the basic conclusion is that the RBF 
Neural network control approaches form a robust set 
of solutions that conform well to the aims of this 
research project. This last outcome means that the 
abstract hypothesis of whether or not this method 
would be beneficiary to the system is upheld. 
 
5 Further Research Work 

A successfully controlled pneumatic actuator could 
be an excellent part of any mechanical system as a 
force generator or movement and transport element. 
A deeper investigation of the dynamics of the 
system, incorporating the effects of temperature and 
energy losses, would allow more precise data to be 
included as separated parameters in the control 
algorithm. It was verified experimentally that 
internal time-variance due to temperature changes 
and load influences, are major factors that must be 
taken fully into account in devising a robust 
controller, and it would be beneficial to include 
them as inputs to the system. Depending on the 
requirements of the application of the pneumatic 
actuator, another controller input could be air 
pressure changes, detected by using appropriate air 
pressure sensors. These additional parameters would 
help the researcher to design a robust and variably 
compliant positioning system, providing a wider 
range of applications. However, perhaps even more 
worthy of attention is the control of a pneumatic 
system with more than one actuator operating 
together, at the same time. In fact, it is intended that 
this is where this research will finally lead, as an 
extension to this paper work. The development of a 
combinational actuator circuit, which will control all 
degrees of freedom of a robotic arm, is the final and 
most challenging further research work that, it is 
hoped, will be undertaken in the near future. 
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